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I. Babuska , B. Q. Guo2 and E. P. Stephan3

Sumnary

This paper applies the techniques of the h-p version to the boundary element method fur

boundary value problems on plane non-smooth domains with piecewisely analytic boundary and data.

The exponential rate cf convergence of the boundary element Galerkin solution is obtained when a

geometric mesh refinement is used near the vertices.

1. Introduction

The h, p and h-p versions (on a quasiuniform mesh) of the boundary element Galerkin method

for integral equations on polygons has been studied in various papers, e.g., in [1. 2. 3, 4]. In a!!

versions the algebraic rate of convergence of the Galerkin solution is restricted by the vertex

singularities of the solution of the integral equations although it could be very smooth away from the

corners. Based upon a regularity analysis (ir countable normed spaces) for the solution of the integral

equation we show in [5] that an exponential rate of convergence with respect to the number of degrees

cf freedom can be achieved for the h-p version by simultaneously reducing the mesh size and increasing

the polynomial de'rees of the boundary elements if a geometric mesh refinement towards the vertices is

used. Here we report the main results from 15].

Let 0 C -2 be a bounded polygonal domain with vertices A, 1 < i < M, the boundary 0Q be

a piecewise analytic curve

o = r = u r,
i=I

where E1 is an open line segment connecting A, and A 4+! (AM+ 1 = A1). By w, we denote the interior

angle at A,.

Let Hk(Q), k > 0 integer, denote the usual Sobolev spaces furnished with the norm

'IPST, University of Maryland, College Park, Maryland.
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I '~0.
2  1/2;iiHk(Q) -- \ _l~ _k 1 tL2(A ),

O<ja I<k

where a = (a.a,), a, > 0 integer, la = or + o and Dau - u The space HF) isO1 ^ 0 2 " h saeH E

defined as the restriction of functions in Ht(2), i.e., 9

H k-12(F) = {uir, u EHW(Q)}, for k > 1,

H k-/"(F) = L2(F), for k ',

H k-1/2-kF) = (H- ''-1(F))f (dualspaces), fork < 4.2

For the investigation of singularities at corners we introduce weighted Sobolev spaces and countable

normed spaces nn the (a,b), and foi A E (a,b), i 1 -2 ]A-.

2 - .+k. -
(P +(x) f i .(x), 3 = (3 ,2) 0 < 3 ,33 < 1, k integer. Now we define for k > I > 0. and

integer E > 0:

Hk"(l) - {u E H-1(I) if f > 0: 4+,_ (x)u ( i < cc, for C < m < k}

B C (1) {u E H: (1), V k > C, I (x) < Cdk-(k -), C > 1, d > I independent of kj..3k}.

For any F, C F. H: (F,) and B (FI) are defined correspondingly with 0, = (,,ji.2). B (F) =

H B (F,) with C = (f, ...... ) = (, 3.. ,M). We shall write 3, > 3, (resp. 3 > 3) if

3, > ,Jj = 1,2 (resp. 13, > 3,, 1 < i < M). By B (F) we denote for 1 < i < M the space

H B ( 1 Hjx F B,, (F1 ).

Remark 1.1. Hb' (r) a. I T (F) are the trace spaces of functions belonging to the weigl, ,d, ,6,-kv '0!
L, I, k,.

space H (Q) and the counktble normed space B,6 (02), respectively (see [6, 7, 8])
0

in the next sections we analyze the regularity of the solution of integral equations for Neumann 0l

and Dirichlet boundary value problems in terms of countable normed spaces B; (r), design the

geometric mesh and the distribution of the degrees of polynomials in the boundary element Galerkin --

method, which lead to the exponential rate of convergence with respect to the number of degree of ----Cod --
Iy CodesI
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freedom. For the proof of the theorems we refer to [5].

2 The Neumann Boundary Value Problem

We c3nsiJei the Neumann problem on a polygonal domain Q

{u = 0 in Q (2.1)

F g

where un means the normal derivative with respect to the outer unit normal, and g satisfies
(9n

f gds = 0 (2.2)
F

Let D and K' be the integral operators for x E r

Du(x) =- - -L (tnx-y)u(y)ds(yI,On , 8n

and
K' 8"(x) _ 7 C n (x-y( du(y)

Ir U r ds(y)

Then the first kind integral equation for the Neumann boundary value problem (2.1) reads as

Du = f on 1' (2.3)

with f = (1-K)g, see [1].

Theorem 2.1. [5] For given g E B (F) satisfying (2.2), the integral equation (2.3) together with the
'2

side condition f uds = 0 has a unique solution u E B (F), for some 3, 0 < 3 < I where /3 depends
r

on 3 as well as on the geometry.

Now we discuss the numerical solution of (2.3) by the h-p version of the boundary element

Galerkin method with a geometric mesh.

Let Q? be a L-shape domain shown in Fig. 2.1. We assume for simplicity that the solution u of
(2.3) belongs to B3(r)(resp. wi(r))with 4P =Y " pXI 62,1, 5 < 1,dl <1 (rep 1 <

< 1) and 4,hi = 1 for 3 < j < 6, i. the singularity occurs only at the origin. For example

2I



4

rhi is the case of i = r 2/3 cos 1) (res,. u = r sin ) on F where (r.0) denote the polar

3 3) nt

coordinates centered at the origin (see [9, 10]).

Let 0' E (0.1) be the mesh factor and n, integer, be the number of layers, and let F, I. 1 < i <~n+1 -;

l(j), < n- - 1 be the boundary inter.1s such that dist(0,F I.) =, 1 < j S n+1 and

dist(0., ) 0, 1 < i < I(j). Then Fr ={F,,, 1 < i < lU), 1 < j n + 1) is called the geometric

mesh ot' assciated with a and n. Fig. 2.2 shows a sequence of the geoemtrc meshes with - 0.15.

Let P {p,, 1 < i < I(J). 1 < j < n+11 be the degree vector with p,,, > 1 integer. The

boundary element space associated with the geometric mesh F and degree vector P is defined by

SIDP(1 -= {OklP, is a polynomial of degree < p,.,}

and

P(r-) = SP(F) n C°(F) c B/2(r)

The boundary element Galerkin procedure for the integral equation (2.3) with given
0,1

g E B (F) is to find up E §P(r7) satisfying " upds = 0 such thata r

where (-,.) denotes the duality between H- 1/2(F) and H / 2(r). We the following approximation

result of the h-p version of the boundary element Galerkin method.

Theorem 2.2. [5] Let u E B3(I') (resp. B (r)) be the solution of the integral equation (2.3) and F be

the boundary of the L-shaped domain shown in Fig. 2.1, f,= 1,1 = 2.2 = 0, 3 < i < 6, j = 1,2,

S2,/)2.1 < 1, (resp. 1 < I < 1) and F,, a E (0,I) be the geometric mesh on r. Let

S"(1) denote the boundary element space defined above with p,, = p, - 1, j/ ! p! < vn, 0 < _

v < oo. Then the boundary element Galerkin solution E sP(F) of (2.4) converges to u in H (F)

exponentially, i.e.,

Iu-uPIH 1/2 M < Ce-bN
1/ 2

where N is the number of degrees of freedom, C and b are some constants independent of N.



5

3. The Dirichlet Boundary Value Problem

In this section we consider the Dirichlet boundary value problem

Au = 0 in f0 (3. i
I ulr =

With the integrdl operators

X' L ) u(y) Enx-yds(y), x E Q
n

and

Ku(x) f - f -n {ex-.'}u(y)ds(y), x E QF any

(3. 1) leads, as shown in [2], to the first kind of integral equation

V _u = f (3.2)
n-

with f = (I+K)g, for which there holds the following result

Theorem 3.1. [5] Let cap(F) :A I where cap(F) is the analytic capacity of r. Then for given
1,2

C 1B3 (F) fn C 0(Fr there erists exactly one solution a- E R (.r) of (.1.2) with ome 3, 0 < 3 < 1.
n

Now we consider the Galerkin solution of (3.2) obtained by the h-p version. For simplicity we

assume again that Q is the L-shaped domain shown in Fig. 2.1 and the solution u of (3.2) has aan
singularity at the origin only. Then the geometric mesh F on r and the boundary element space

S P(F,) are defined as in the previous section. Obviously, sP(F) C L2(F) C H-1/2(F).

The Galerkin procedure for the integral equation (3.2) is to seek Vkp E SP(F,) such that for all

wp E S P(r,-,)

opo)= ((1+K)g,Op) (3.3)

For boundary element solutions Op we have the following approximation theorem.

Theorem 3.2. [51 Let Lu BI(F) (resp. B9(r)) be the solution of the integral equation (3.2) and r is

the boundary of the L-shaped domain shown in Fig. 2.1, with cap(F) :# 1, and i ,, = 42.2 = f,, for

3 < i < 6, j = 1,2, < f 1,2,/42, < 1, (resp. 1< /12,fd21 < ) and let r.", a E (0,1) be the
6 p62



geometric mesh on F and sPF) be the boundary element space defined above with p, = pI > 0.

lp < p, < Ln 0 < i < v < .. Then the boundary element Galerkin solution t'p E S (F,) of (3.3)au -/2

conterges to i- in H "(F) exponentially, i.e.,
dn

It , O < C e - b N 1 
/ 2

n'- 8nH - (F) b

wchere N is the number of degrees of freedom, C and b are some constants independent of N.

4. Conclusion

The regularity results for the solutions of the integral equations for the Dirichlet and Neumann

boundary value problems of the Laplacian can be generalized to bipotential and elasticity problems

with essential, natural, and mixed boundary conditions. The h-p version of the boundary element

method possesses advantages over the finite element method such as reducing the number of degree of

freedom and avoiding the difficulties in the treatment of non-homogeneous essential boundary

conditions in the finite element method (see [10]). Although the geometric mesh show- in Fig. 2.1 is

designed for the problems with singularity at one corner it can be generalized without any difficulty to

the case that the singularity occurs at several corners of F, and thm exponential rate of convergence can

be proven as well. All theorems above will hold if Q is a curvilinear polygon.
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